Главная » 15. Лекция: Разработка более сложных цифровых устройств
Цифровые генераторы (или, как их еще называют, синтезаторы) аналоговых сигналов произвольной формы часто используются при отладке различных аналоговых и аналого-цифровых устройств и систем. Они позволяют не только получить сигналы разных стандартных и нестандартных форм, но и обеспечить высокую точность задания амплитуды и частоты сигнала, не достижимые в случае обычных аналоговых генераторов. Цифровые генераторы работают обычно под управлением компьютеров или контроллеров, что обуславливает большие удобства пользователя и широкие возможности по заданию разнообразных форм сигналов и по их хранению.

Мы будем разрабатывать довольно простой генератор, рассчитанный на звуковой диапазон частот выходного сигнала 20 Гц ... 20 кГц (период от 50 мкс до 50 мс). Генератор должен формировать сигналы произвольной формы с амплитудой, задаваемой управляющим кодом. Генератор должен работать в режиме автоматической (периодической) генерации, а также в режиме разовой генерации с остановкой генерации после окончания одного периода выходного сигнала. Управление работой генератора должно быть полностью цифровым.

Отметим, что в реальности сигналы сложной формы, как правило, бывают низкочастотными. Они встречаются, например, при виброиспытаниях, в медицинской технике, в сейсмической технике и т.д. Высокочастотные сигналы обычно имеют довольно простую форму, например, синусоидальную. Поэтому наш простой генератор, рассчитанный на невысокие частоты, будет, тем не менее, удовлетворять требованиям довольно широкого спектра применений.

Разработку генератора мы начнем "с конца", то есть с того выходного сигнала, который он должен формировать.

Как уже отмечалось в лекции 13 , выходной сигнал ЦАП UЦАП представляет собой ступенчатую функцию, которую можно представить в виде суммы идеального ("гладкого") аналогового сигнала UВЫХ и пилообразного сигнала помехи UПОМ (рис. 15.9).

Сигнал помехи UПОМ имеет основную частоту, равную частоте поступления входных кодов на ЦАП. Для сглаживания ступенек выходного сигнала ЦАП и приближения его к идеальному сигналу UВЫХ можно применить простой аналоговый фильтр низкой частоты (ФНЧ), который должен существенно ослаблять сигнал помехи, но не ослаблять полезный выходной сигнал генератора. В примере на рис. 15.9 частота полезного сигнала в 16 раз меньше частоты сигнала помехи, поэтому задача фильтрации не слишком сложна. Однако от генератора сигналов произвольной формы может понадобиться синтез выходных сигналов с крутыми фронтами (например, прямоугольных или пилообразных сигналов). В этом случае применение такого выходного фильтра низкой частоты может исказить выходные сигналы, затянув их фронты. Поэтому целесообразно предусмотреть два выхода генератора: один с низкочастотной фильтрацией, а другой без нее.



Рис. 15.9.  Цифровая генерация аналогового сигнала
Помимо фильтра низкой частоты, выходной узел генератора сигналов должен содержать схему задания амплитуды выходного сигнала. В случае использования оперативной памяти для хранения кодов выборок выходного сигнала, схема задания амплитуды может и отсутствовать. При этом в память необходимо заносить коды выборок сигнала с нужной амплитудой. Однако такой подход не слишком удобен, так как он требует пересчета всех кодов выборок для каждой новой амплитуды сигнала выбранной формы. Гораздо удобнее сделать так, чтобы в памяти всегда хранились коды выборок сигнала с максимально возможной амплитудой, а выходной сигнал с ЦАП ослаблялся управляемым аттенюатором в нужное количество раз.

В результате схема выходного узла генератора аналоговых сигналов будет включать в себя еще и управляемый аттенюатор, рассмотренный в разделе 7.1 (рис. 15.10).



Рис. 15.10.  Схема выходного узла генератора
Аналоговый фильтр нижней частоты должен иметь коэффициент передачи в полосе пропускания, равный единице и частоту среза, обеспечивающую эффективное подавление сигнала помехи. Тип схемы фильтра и его порядок не слишком важны. Для удобства пользователя целесообразно сделать фильтр неинвертирующим, чтобы выходные сигналы на обоих выходах генератора ( UВЫХ1 и UВЫХ2 ) были одной полярности. Аттенюатор управляется 8-разрядным кодом амплитуды, что обеспечивает коэффициент деления сигнала ... Читать дальше »
Категория: 15. Лекция: Разработка более сложных цифровых устройств | Просмотров: 2191 | Добавил: willem | Дата: 12.03.2012

Разработка логического анализатора

Логический анализатор — это контрольно-измерительный прибор, предназначенный для запоминания (фиксации) и последующего анализа (например, просмотра на экране) временных диаграмм большого количества цифровых сигналов. Логические анализаторы используются при динамической отладке различных цифровых устройств и систем, а также при контроле их работы. Совершенно незаменимы они при разработке и отладке различных микропроцессорных систем, контроллеров, компьютеров, где используется большое количество многоразрядных шин цифровых сигналов. Именно логические анализаторы позволяют разработчику увидеть те временные диаграммы, которые он рисует на бумаге при проектировании своего устройства, причем увидеть их в реальном масштабе времени, посмотреть, как работает устройство на своей нормальной рабочей скорости.

Логический анализатор по своему назначению близок к осциллографу, так как он также позволяет наблюдать на экране временные диаграммы сигналов. Но существуют и существенные отличия логического анализатора от обычного (не цифрового) осциллографа:

Логический анализатор работает только с цифровыми, то есть двухуровневыми (реже трехуровневыми) сигналами, а осциллограф — с аналоговыми сигналами, имеющими бесконечно большое число разрешенных уровней.
Логический анализатор имеет большое количество входных линий (обычно от 16 до 64), то есть позволяет одновременно фиксировать множество входных сигналов, а осциллографы обычно позволяют одновременно увидеть не более четырех входных сигналов.
Логический анализатор работает в режиме однократного запоминания временных диаграмм (как запоминающий осциллограф). То есть анализатор запоминает состояния входных сигналов в течение заданного времени (называемого окном регистрации), а затем дает возможность анализировать зафиксированные последовательности. Осциллограф же работает обычно в режиме непрерывной развертки, то есть он не запоминает формы входного сигнала и позволяет наблюдать только повторяющиеся, периодические сигналы.
Логический анализатор предусматривает возможность так называемой предпусковой регистрации. Эта возможность предусматривается и в цифровых осциллографах, но ее нет в аналоговых осциллографах.
Рассмотрим подробнее, что такое предпусковая регистрация.

Процесс регистрации входных сигналов (или отображения их на экране в обычном осциллографе) всегда должен быть привязан к какому-то моменту времени, к какому-то внешнему событию, называемому запуском. Иначе разобраться в отображаемых сигналах будет совершенно невозможно. Например, в осциллографах моментом запуска обычно является момент превышения входным исследуемым сигналом установленного порога. Сигналом запуска может служить и специальный внешний синхронизирующий сигнал. В логических анализаторах в качестве запуска обычно используется момент появления на входах заданного уровня или заданной последовательности одного или нескольких входных сигналов.

В обычных осциллографах отображение формы входного сигнала (или входных сигналов) начинается в момент запуска, то есть на экране видно только то, что происходило со входными сигналами после момента запуска. Такая регистрация может быть названа послепусковой. Можно также сказать, что точка запуска всегда находится в начале окна регистрации (рис. 15.1).



Рис. 15.1.  Послепусковая регистрация в аналоговых осциллографах
В логических анализаторах (и в цифровых осциллографах) существует возможность увидеть и зафиксировать не только то, что было после запуска, но еще и то, что происходило в течение определенного времени до момента запуска. Именно эта регистрация до момента запуска и называется предпусковой регистрацией. В этом случае точка запуска может находиться и в начале, и в середине, и в конце окна регистрации (рис. 15.2). Понятно, что такая возможность очень удобна, так как, выбирая величину длительности предпусковой регистрации, можно увидеть те события, временная привязка к началу которых затруднена или попросту невозможна. Длительность (глубина) предпусковой регистрации может быть постоянной (например, равной половине длительности окна регистрации) или переменной (то есть задаваться пользователем в пределах от нуля до полной длительности окна регистрации). При переменной глубине предпусковой регистрации точка запуска может располагаться в любой точке окна регистрации — от его начала до конца.

С точки зрения схемотехники, логический анализатор представляет собой быстродействующую буферную оперативную память, раб ... Читать дальше »
Категория: 15. Лекция: Разработка более сложных цифровых устройств | Просмотров: 2630 | Добавил: willem | Дата: 12.03.2012