Главная » 2012 » Март » 10

Наиболее распространенные применения одновибраторов следующие (рис 6.15):

  1. увеличение длительности входного импульса;
  2. уменьшение длительности входного импульса;
  3. деление частоты входного сигнала в заданное число раз;
  4. формирование сигнала огибающей последовательности входных импульсов.

Для увеличения или уменьшения длительности входного сигнала (а и б) надо всего лишь выбрать сопротивление резистора и емкость конденсатора, исходя из требуемой длительности выходного сигнала. В этом случае можно использовать одновибратор любого типа: как с перезапуском, так и без перезапуска.

Рис. 6.15.  Стандартные применения одновибраторов

Для деления частоты входных импульсов в заданное число раз (в) применяется только одновибратор без перезапуска. При этом надо выбрать такую длительность выходного сигнала, чтобы одновибратор пропускал нужное количество входных импульсов. Например, если требуется разделить на 3 частоту входных импульсов f, то длительность выходного сигнала одновибратора надо выбрать в пределах от 2/f до 3/f. При этом одновибратор будет пропускать два входных импу ... Читать дальше »

Категория: 6. Лекция: Комбинационные микросхемы. Часть 2 | Просмотров: 2021 | Добавил: willem | Дата: 10.03.2012

Одновибраторы и генераторы

Одновибраторы и генераторы вообще-то нельзя отнести к комбинационным микросхемам. Они занимают промежуточное положение между комбинационными микросхемами и микросхемами с внутренней памятью. Их выходные сигналы не определяются однозначно входными сигналами, как у комбинационных микросхем. Но в то же время они и не хранят информацию длительное время.

Одновибраторы ("ждущие мультивибраторы", английское название "Monostable Multivibrator") представляют собой микросхемы, которые в ответ на входной сигнал (логический уровень или фронт) формируют выходной импульс заданной длительности. Длительность определяется внешними времязадающими резисторами и конденсаторами. То есть можно считать, что у одновибраторов есть внутренняя память, но эта память хранит информацию о входном сигнале строго заданное время, а потом информация исчезает. На схемах одновибраторы обозначаются буквами G1.

В стандартные серии микросхем входят одновибраторы двух основных типов (отечественное обозначение функции микросхемы - АГ):

  • Одновибраторы без перезапуска (АГ1 - одиночный одновибратор, АГ4 - два одновибратора в корпусе).
  • Одновибраторы с перезапуском (АГ3 - два одновибратора в корпусе).

Разница между этими двумя типами иллюстрируется рис 6.10. Одновибратор без перезапуска не реагирует на входной сигнал до окончания своего выходного импульса. Одновибратор с перезапуском начинает отсчет нового времени выдержки Т с каждым новым входным сигналом независимо от того, закончилось ли предыдущее время выдержки. В случае, когда период следования входных сигналов меньше времени выдержки Т, выходной импульс одновибратора с перезапуском не прерывается. Если период следования входных запускающих импульсов больше времени выдержки одновибратора Т, то оба типа одновибраторов работают одинаково.

... Читать дальше »

Категория: 6. Лекция: Комбинационные микросхемы. Часть 2 | Просмотров: 1078 | Добавил: willem | Дата: 10.03.2012

Преобразователи кодов

Микросхемы преобразователей кодов (англ. сonverter) служат для преобразования входных двоичных кодов в выходные двоично-десятичные и наоборот - входных двоично-десятичных кодов в выходные двоичные. Они используются довольно редко, так как применение двоично-десятичных кодов ограничено узкой областью, например, они применяются в схемах многоразрядной десятичной индикации. К тому же при правильной организации схемы часто можно обойтись без преобразования в двоично-десятичный код, например, выбирая счетчики, работающие в двоично-десятичном коде. Преобразование двоично-десятичного кода в двоичный встречается еще реже.

На схемах микросхемы преобразователей обозначаются буквами X/Y. В отечественных сериях преобразователи имеют обозначения ПР.

Кроме того, надо учесть, что любые преобразования параллельных кодов, даже самые экзотические, могут быть легко реализованы на микросхемах постоянной памяти нужного объема. Обычно это намного удобнее, чем брать стандартные микросхемы преобразователей кодов.

Рис. 6.5.  Микросхемы преобразователей кодов

В стандартные серии входят две микросхемы преобразователей кодов: ПР6 для преобразования двоично-десятичного кода в двоичный и ПР7 для преобразования двоичного кода в двоично-десятичный (рис. 6.5). Обе микросхемы имеют выходы ОК, поэтому к ним надо присоединять нагрузочные резисторы величиной около 1 кОм, но для удобства в дальнейших схемах эти резисторы не показаны. Обе микросхемы имеют также вход разрешения выхода -ЕО при нулевом уровне на котором все выходы активны, а при единичном - переходят в состояние единицы. Преобразователь ПР6 имеет дополнительные выходы А, В, С, не участвующие в основном преобразовании.

Таблица 6.2. Таблица истинности преобразователя ПР6

Входы Выходы

-EO 20 10 8 4 2 32 16 8 4 2

1 X X X X X 1 1 1 1 1

0 0 0 0 0 0 0 0 0 0 0

0 0 ... Читать дальше »

Категория: 6. Лекция: Комбинационные микросхемы. Часть 2 | Просмотров: 950 | Добавил: willem | Дата: 10.03.2012

Сумматоры

Микросхемы сумматоров (английское Adder), как следует из их названия, предназначены для суммирования двух входных двоичных кодов, то есть выходной код будет равен арифметической сумме двух входных кодов. Например, если один входной код - 7 (0111), а второй - 5 (0101), то суммарный код на выходе будет 12 (1100). Сумма двух двоичных чисел с числом разрядов N может иметь число разрядов (N + 1). Например, при суммировании чисел 13 (1101) и 6 (0110) получается число 19 (10011). Поэтому количество выходов сумматора на единицу больше количества разрядов входных кодов. Этот дополнительный (старший) разряд называется выходом переноса.

На схемах сумматоры обозначаются буквами SM. В отечественных сериях код, обозначающий микросхему сумматора, - ИМ.

Сумматоры бывают одноразрядные (для суммирования двух одноразрядных чисел), 2-х разрядные (суммируют 2-х разрядные числа) и 4-х разрядные (суммируют 4-х разрядные числа). Чаще всего применяют именно 4-разрядные сумматоры. На рис 6.1  показаны для примера 2-разрядный и 4-разрядный сумматоры. Микросхема ИМ6 отличается от ИМ3 только повышенным быстродействием и номерами используемых выводов микросхемы, функция же выполняется та же самая.

Рис. 6.1.  Примеры микросхем сумматоров

Помимо выходных разрядов суммы и выхода переноса, сумматоры имеют вход расширения (другое название - вход переноса) С для объединения нескольких сумматоров с целью увеличения разрядности. Если на этот вход приходит единица, то выходная сумма увеличивается на единицу, если же приходит нуль, то выходная сумма не увеличивается. Если используется одна микросхема сумматора, то на ее вход расширения С необходимо подать нуль.

Для примера в табл 6.1 приведена полная таблица истинности 2-разрядного сумматора ИМ2. Как видно из таблицы, выходной 3-разрядный код (Р, S1, S0) равен сумме входных 2-разрядных кодов (А1, А0) и (В1, В0), а также сигнала С. Нулевые разряды - младшие, первые разряды - старшие. Полная таблица истинно ... Читать дальше »

Категория: 6. Лекция: Комбинационные микросхемы. Часть 2 | Просмотров: 1836 | Добавил: willem | Дата: 10.03.2012

Компараторы кодов

Микросхемы компараторов кодов (английское Comparator) применяются для сравнения двух входных кодов и выдачи на выходы сигналов о результатах этого сравнения (о равенстве или неравенстве кодов). На схемах компараторы кодов обозначаются двумя символами равенства: "= =". Код типа микросхемы компаратора кода в отечественных сериях — СП.

Примером такой микросхемы может служить СП1 — 4-х разрядный компаратор кодов, сравнивающий величины кодов и выдающий информацию о том, какой код больше, или о равенстве кодов (рис 5.16 ) .

Помимо восьми входов для сравниваемых кодов (два 4-х разрядных кода, обозначаемых А0...А3 и В0...В3), компаратор СП1 имеет три управляющих входа для наращивания разрядности (А>B, A<B, A=B) и три выхода результирующих сигналов (А>B, A<B, A=B). Для удобства на схемах управляющие входы и выходы иногда обозначают просто ">", "<" и "=". Нулевые разряды кодов (А0 и В0) — младшие, третьи разряды (А3 и В3) — старшие.

Рис. 5.16.  4-х разрядный компаратор кодов СП1 (два варианта обозначения)

Таблица истинности компаратора кодов (табл 5.4) кажется на первый взгляд довольно сложной, но на самом деле все просто.

Если используется одиночная микросхема, то для ее правильной работы достаточно подать единицу на вход A = B, а состояния входов A<B и A>B не важны, на них можно подать как нуль, так и единицу. Назначение выходов понятно из их названия, а полярность выходных сигналов положительная (активный уровень — единица). Если микросхемы компараторов кодов каскадируются (об­ъе­ди­ня­ют­ся) для увеличения числа разрядов сравниваемых кодов, то надо выходные сигналы микросхемы, обрабатывающей младшие разряды кода, подать на одноименные входы микросхемы, обрабатывающей старшие разряды кода (рис 5.17).

... Читать дальше »
Категория: 5. Лекция: Комбинационные микросхемы. Часть 1 | Просмотров: 1257 | Добавил: willem | Дата: 10.03.2012

Мультиплексоры (английское Multiplexer) предназначены для поочередной передачи на один выход одного из нескольких входных сигналов, то есть для их мультиплексирования. Количество мультиплексируемых входов называется количеством каналов мультиплексора, а количество выходов называется числом разрядов мультиплексора. Например, 2-канальный 4-разрядный мультиплексор имеет 4 выхода, на каждый из которых может передаваться один из двух входных сигналов. А 4-канальный 2-разрядный мультиплексор имеет 2 выхода, на каждый из которых может передаваться один из четырех входных сигналов. Число каналов мультиплексоров, входящих в стандартные серии, составляет от 2 до 16, а число разрядов — от 1 до 4, причем чем больше каналов имеет мультиплексор, тем меньше у него разрядов.

Управление работой мультиплексора (выбор номера канала) осуществляется с помощью входного кода адреса. Например, для 4-канального мультиплексора необходим 2-разрядный управляющий (адресный) код, а для 16-канального — 4-разрядный код. Разряды кода обозначаются 1, 2, 4, 8 или А0, А1, А2, А3. Мультиплексоры бывают с выходом 2С и с выходом 3С. Выходы мультиплексоров бывают прямыми и инверсными. Выход 3С позволяет объединять выходы мультиплексоров с выходами других микросхем, а также получать двунаправленные и мультиплексированные линии. Некоторые микросхемы мультиплексоров имеют вход разрешения/запрета С (другое обозначение — S), который при запрете устанавливает прямой выход в нулевой уровень.

На рис 5.12 показаны для примера несколько микросхем мультиплексоров из состава стандартных серий. В отечественных сериях мультиплексоры имеют код типа микросхемы КП. На схемах микросхемы мультиплексоров обозначаются буквами MS.

Рис. 5.12.  Примеры микросхем мультиплексоров

... Читать дальше »
Категория: 5. Лекция: Комбинационные микросхемы. Часть 1 | Просмотров: 1750 | Добавил: willem | Дата: 10.03.2012

На рис 5,9 показаны для примера две микросхемы шифраторов ИВ1 и ИВ3. Первая имеет 8 входов и 3 выхода (шифратор 8–3), а вторая — 9 входов и 4 выхода (шифратор 9–4). Все входы шифраторов — инверсные (активные входные сигналы — нулевые). Все выходы тоже инверсные, то есть формируется инверсный код. Микросхема ИВ1, помимо 8 информационных входов и 3 разрядов выходного кода (1, 2, 4), имеет инверсный вход разрешения –ЕI, выход признака прихода любого входного сигнала –GS, а также выход переноса –EO, позволяющий объединять несколько шифраторов для увеличения разрядности.

Рис. 5.9.  Микросхемы шифраторов

Таблица истинности шифратора ИВ1 приведена в табл 5.2.

... Читать дальше »
Категория: 5. Лекция: Комбинационные микросхемы. Часть 1 | Просмотров: 1799 | Добавил: willem | Дата: 10.03.2012

Наиболее типичное применение дешифраторов состоит именно в дешифрировании входных кодов, при этом входы С используются как стробирующие, управляющие сигналы. Номер активного (то есть нулевого) выходного сигнала показывает, какой входной код поступил. Если нужно дешифровать код с большим числом разрядов, то можно объединить несколько микросхем дешифраторов (пример показан на рис 5.3).

Рис. 5.3.  Увеличение количества разрядов дешифратора

При этом старшие разряды кода подаются на основной дешифратор, выходы которого разрешают работу нескольких дополнительных дешифраторов. На объединенные входы этих дополнительных дешифраторов подаются младшие разряды входного кода. Из пяти микросхем дешифраторов 2–4 можно получить дешифратор 4–16, как показано на рисунке (хотя лучше, конечно, взять готовую микросхему). Точно так же из девяти микросхем 3–8 можно получить дешифратор 6–64, а из семнадцати микросхем 4–16 — дешифратор 8–256. Еще одно распространенное применение дешифраторов — селекция (выбор) заданных входных кодов. Появление отрицательного сигнала на выбранном выходе дешифратора будет означать поступление на вход интересующего нас кода. В данном случае увеличивать число разрядов входного селектируемого кода гораздо проще, чем в предыдущем (см.рис 5.3). Например, две микросхемы 4–16 позволяют селектировать 8-разрядный код (рис 5.4). В примере на рисунке селектируется 16-ричный код 2А (двоичный код 0010 1010). При этом один дешифратор работа ет с младшими четырьмя разрядами кода, а другой — со старшими четырьмя разрядами. Объединяются дешифраторы так, что один из них разрешает работу другого по входам –С1 и –С2. Применяя механические переключатели выходов дешифраторов (тумблеры, перемычки), можно легко изменять код, селектируемый данной схемой.

Рис. 5.4. ... Читать дальше »

Категория: 5. Лекция: Комбинационные микросхемы. Часть 1 | Просмотров: 1842 | Добавил: willem | Дата: 10.03.2012

Дешифраторы и шифраторы

Функции дешифраторов и шифраторов понятны из их названий. Дешифратор преобразует входной двоичный код в номер выходного сигнала (дешифрирует код), а шифратор преобразует номер входного сигнала в выходной двоичный код (шифрует номер входного сигнала). Количество выходных сигналов дешифратора и входных сигналов шифратора равно количеству возможных состояний двоичного кода (входного кода у дешифратора и выходного кода у шифратора), то есть 2n, где n — разрядность двоичного кода (рис 5.1). Микросхемы дешифраторов обозначаются на схемах буквами DC (от английского Decoder), а микросхемы шифраторов — CD (от английского Coder).

Рис. 5.1.  Функции дешифратора (слева) и шифратора (справа)

На выходе дешифратора всегда присутствует только один сигнал, причем номер этого сигнала однозначно определяется входным кодом. Выходной код шифратора однозначно определяется номером входного сигнала.

Рассмотрим подробнее функцию дешифратора.

В стандартные серии входят дешифраторы на 4 выхода (2 разряда входного кода), на 8 выходов (3 разряда входного кода) и на 16 выходов (4 разряда входного кода). Они обозначаются соответственно как 2–4, 3–8, 4–16. Различаются микросхемы дешифраторов входами управления (разрешения/запрета выходных сигналов), а также типом выхода: 2С или ОК. Выходные сигналы всех дешифраторов имеют отрицательную полярность. Входы, на которые поступает входной код, называют часто адресными входами. Обозначают эти входы 1, 2, 4, 8, где число соответствует весу двоичного кода (1 — младший разряд, 2 — следующий разряд и т.д.), ил ... Читать дальше »

Категория: 5. Лекция: Комбинационные микросхемы. Часть 1 | Просмотров: 836 | Добавил: willem | Дата: 10.03.2012

Комбинационные микросхемы выполняют более сложные функции, чем простые логические элементы. Их входы объединены в функциональные группы и не являются полностью взаимозаменяемыми. Например, любые два входа логического элемента И-НЕ совершенно спокойно можно поменять местами, от этого выходной сигнал никак не изменится, а для комбинационных микросхем это невозможно, так как у каждого входа — своя особая функция.

Объединяет комбинационные микросхемы с логическими элементами то, что они не имеют внутренней памяти. То есть уровни их выходных сигналов всегда однозначно определяются текущими уровнями входных сигналов и никак не связаны с предыдущими значениями входных сигналов. Любое изменение входных сигналов обязательно изменяет состояние выходных сигналов. Именно поэтому логические элементы иногда также называют комбинационными микросхемами, в отличие от последовательных (или последовательностных) микросхем, которые имеют внутреннюю память и управляются не уровнями входных сигналов, а их последовательностями.

Строго говоря, все комбинационные микросхемы внутри построены из простейших логических элементов, и эта их внутренняя структура часто приводится в справочниках. Но для разработчика цифровой аппаратуры эта информация обычно лишняя, ему достаточно знать только таблицу истинности, только принцип преобразования входных сигналов в выходные, а также величины задержек между входами и выходами и уровни входных и выходных токов и напряжений. Внутренняя же структура важна для разработчиков микросхем, а также в тех редчайших случаях, когда надо построить новую комбинационную микросхему из микросхем простых логических элементов.

Состав набора комбинационных микросхем, входящих в стандартные серии, был определен исходя из наиболее часто встречающихся задач. Требуемые для этого функции реализованы в комбинационных микросхемах наиболее оптимально, с минимальными задержками и минимальным потреблением мощности. Поэтому пытаться повторить эту уже проделанную однажды работу не стоит. Надо просто уметь грамотно применять то, что имеется.

Категория: 5. Лекция: Комбинационные микросхемы. Часть 1 | Просмотров: 634 | Добавил: willem | Дата: 10.03.2012

Триггеры Шмитта

Триггеры Шмитта представляют собой специфические логические элементы, специально рассчитанные на работу с входными аналоговыми сигналами. Они предназначены для преобразования входных аналоговых сигналов в выходные цифровые сигналы. Появление таких микросхем связано в первую очередь с необходимостью восстановления формы цифровых сигналов, искаженных в результате прохождения по линиям связи. Фронты таких сигналов оказываются пологими, в результате чего форма сигналов вместо прямоугольной может стать близкой к треугольной или синусоидальной. К тому же сигналы, передаваемые на большие расстояния, сильно искажаются шумами и помехами. Восстановить их форму в исходном виде, устранить влияние помех и шумов как раз и призваны триггеры Шмитта.

На первом и втором уровнях представления (логическая модель и модель с временными задержками) триггеры Шмитта представляют собой обычные логические элементы, которые с определенной задержкой распространения выполняют логическую функцию над входными цифровыми сигналами. Но на третьем уровне представления их отличие от обычных логических элементов очень существенно.

Рис. 4.9.  Передаточные характеристики обычного инвертора и триггера Шмитта с инверсией

Если построить график зависимости выходного напряжения элемента от входного (передаточную характеристику), то для триггера Шмитта он будет гораздо сложнее, чем для обычного элемента (рис 4,9).

В случае обычного элемента с инверсией (а) при входных напряжениях ниже определенного порога срабатывания Uпор выходной сигнал имеет высокий уровень, а при входных напряжениях выше этого порога Uпор — низкий уровень. При этом не имеет значения, возрастает входное напряжение или убывает.

... Читать дальше »

Категория: 4. Лекция: Более сложные логические элементы | Просмотров: 1875 | Добавил: willem | Дата: 10.03.2012

Сложные логические элементы

Помимо простейших логических элементов, рассмотренных в предыдущих разделах, в состав стандартных серий входит и несколько более сложных логических элементов. Они представляют собой несложную комбинацию из простейших логических элементов. От более сложных комбинационных микросхем, которым будет посвящена следующая лекция, эти элементы отличаются именно очевидной сводимостью к простейшим элементам. Поэтому в справочниках обычно даже не приводятся таблицы истинности этих элементов.

Рис. 4.5.  Логический элемент ЛР1 и его эквивалентная схема

Типичный пример сложного логического элемента — ЛР1. В корпусе микросхемы содержится два элемента, каждый из которых представляет собой комбинацию из двух элементов 2И и одного элемента 2ИЛИ-НЕ (рис 4,5). По такому же принципу строятся и другие микросхемы ЛР. Разница между ними только в количестве элементов И и в количестве входов этих элементов (рис 4,6). Некоторые из микросхем ЛР (ЛР1, ЛР3) допускают подключение к специальным входам микросхем расширителей ЛД, хотя такое расширение применяется на практике довольно редко. Микросхема ЛР10 отличается от ЛР9 выходом ОК.

Рис. 4.6.  Примеры логических элементов ЛР

... Читать дальше »

Категория: 4. Лекция: Более сложные логические элементы | Просмотров: 766 | Добавил: willem | Дата: 10.03.2012

Элементы Исключающее ИЛИ

Элементы Исключающее ИЛИ (по-английски — Exclusive-OR) также можно было бы отнести к простейшим элементам, но функция, выполняемая ими, несколько сложнее, чем в случае элемента И или элемента ИЛИ. Все входы элементов Исключающее ИЛИ равноправны, однако ни один из входов не может заблокировать другие входы, установив выходной сигнал в уровень единицы или нуля.

Таблица 4.1. Таблица истинности двухвходовых элементов исключающего ИЛИ

Вход 1

Вход 2

Выход

0

0

0

0

1

1

1

0

1

1

1

0


... Читать дальше »

Категория: 4. Лекция: Более сложные логические элементы | Просмотров: 1435 | Добавил: willem | Дата: 10.03.2012

Следующий шаг на пути усложнения компонентов цифровой электроники — это элементы, выполняющие простейшие логические функции. Объединяет все эти элементы то, что у них есть несколько равноправныхвходов (от 2 до 12) и один выход, сигнал на котором определяется комбинацией входных сигналов.

Самые распространенные логические функции — это И (в отечественной системе обозначений — ЛИ), И-НЕ(обозначается ЛА), ИЛИ (обозначается ЛЛ) и ИЛИ-НЕ (обозначается ЛН). Присутствие слова НЕ в названии элемента обозначает только одно — встроенную инверсию сигнала. В международной системе обозначений используются следующие сокращения: AND — функция И, NAND — функция И-НЕ, OR — функция ИЛИ, NOR — функция ИЛИ-НЕ.

Название самих функций И и ИЛИ говорит о том, при каком условии на входах появляется сигнал на выходе. При этом важно помнить, что речь в данном случае идет о положительной логике, о положительных, единичных сигналах на входах и на выходе.

Элемент И формирует на выходе единицу тогда и только тогда, если на всех его входах (и на первом, и на втором, и на третьем и т.д.) присутствуют единицы. Если речь идет об элементе И-НЕ, то на выходе формируется нуль, когда на всех входах — единицы (табл 3,4). Цифра перед названием функции говорит о количестве входов элемента. Например, 8И-НЕ — это восьмивходовой элемент И с инверсией на выходе.

... Читать дальше »
Категория: 3. Лекция: Простейшие логические элементы | Просмотров: 2770 | Добавил: willem | Дата: 10.03.2012

Повторители и буферы отличаются от инверторов прежде всего тем, что они не инвертируют сигнал (правда, существуют и инвертирующие буферы). Зачем же тогда они нужны? Во-первых, они выполняют функцию увеличения нагрузочной способности сигнала, то есть позволяют подавать один сигнал на много входов. Для этого имеются буферы с повышенным выходным током и выходом 2С, например, ЛП16 (шесть буферных повторителей). Во-вторых, большинство буферов имеют выход ОК или 3С, что позволяет использовать их для получения двунаправленных линий или для мультиплексирования сигналов. Поясним подробнее эти термины.


Рис. 3.6.  Двунаправленная линия

Под двунаправленными линиями понимаются такие линии (провода), сигналы по которым могут распространяться в двух противоположных направлениях. В отличие от однонаправленных линий, которые идут от одного выхода к одному или нескольким входам, к двунаправленной линии могут одновременно подключаться несколько выходов и несколько входов (рис 3,6). Понятно, что двунаправленные линии могут организовываться только на основе выходов ОК или 3С. Поэтому почти все буферы имеют именно такие выходы.


Рис. 3.7.  Однонаправленная мультиплексированная линия на основе буферов

Мультиплексированием называется передача ... Читать дальше »

Категория: 3. Лекция: Простейшие логические элементы | Просмотров: 1265 | Добавил: willem | Дата: 10.03.2012

Простейшие логические элементы

Изучение базовых элементов цифровой электроники мы начнем с наиболее простых, а затем будем рассматривать все более сложные. Примеры применения каждого следующего элемента будут опираться на все элементы, рассмотренные ранее. Таким образом, будут постепенно даны главные принципы построения довольно сложных цифровых устройств.

Логические элементы (или, как их еще называют, вентили, "gates") — это наиболее простые цифровые микросхемы. Именно в этой простоте и состоит их отличие от других микросхем. Как правило, в одном корпусе микросхемы может располагаться от одного до шести одинаковых логических элементов. Иногда в одном корпусе могут располагаться и разные логические элементы.

Обычно каждый логический элемент имеет несколько входов (от одного до двенадцати) и один выход. При этом связь между выходным сигналом и входными сигналами (таблица истинности) предельно проста. Каждой комбинации входных сигналов элемента соответствует уровень нуля или единицы на его выходе. Никакой внутренней памяти у логических элементов нет, поэтому они относятся к группе так называемых комбинационных микросхем. Но в отличие от более сложных комбинационных микросхем, рассматриваемых в следующей лекции, логические элементы имеют входы, которые не могут быть разделены на группы, различающиеся по выполняемым ими функциям.

Главные достоинства логических элементов, по сравнению с другими цифровыми микросхемами, — это их высокое быстродействие (малые времена задержек), а также малая потребляемая мощность (малый ток потребления). Поэтому в тех случаях, когда требуемую функцию можно реализовать исключительно на логических элементах, всегда имеет смысл проанализировать этот вариант. Недостаток же их состоит в том, что на их основе довольно трудно реализовать сколько-нибудь сложные функции. Поэтому чаще всего логические элементы используются только в качестве дополнения к более сложным, к более "умным" микросхемам. И любой разработчик обычно стремится использовать их как можно меньше и как можно реже. Существует даже мнение, что мастерство разработчика обратно пропорционально количеству используемых им логических элементов. Однако это верно далеко не всегда.

Инверторы

Самый простой логический элемент — это инвертор (логический элемент НЕ, "inverter"), уже упоминавшийся в первой лекции . Инвертор выполняет простейшую логическую функцию — инвертирование, то есть изменение уровня входного сигнала на противоположный. Он имеет всего один вход и один выход. Выход инвертора может быть типа 2С или типа ОК. На рис 3,1 показаны условные обозначения инвертора, принятые у нас и за рубежом, а в табл 3,1 представлена таблица истинности инвертора.


Рис. 3.1.  Условные обозначения инверторов: зарубежные (слева) и отечественные (справа)

В одном корпусе микросхемы обычно бывает шесть инверторов. Отечественное обозначение микросхем инверторов — "ЛН". Примеры: КР1533ЛН1 (SN74ALS04) — шесть инверторов с выходом 2С, КР ... Читать дальше »

Категория: 3. Лекция: Простейшие логические элементы | Просмотров: 1006 | Добавил: willem | Дата: 10.03.2012

Функции цифровых устройств

Любое цифровое устройство от самого простейшего до самого сложного всегда действует по одному и тому же принципу (рис2,11). Оно принимает входные сигналы, выполняет их обработку, передачу, хранение и выдает выходные сигналы. При этом совсем не обязательно любое изменение входных сигналов приводит к немедленному и однозначному изменению выходных сигналов. Реакция устройства может быть очень сложной, отложенной по времени, неочевидной, но суть от этого не меняется.

В качестве входных сигналов нашего устройства могут выступать сигналы с выходов других цифровых устройств, с тумблеров и клавиш или с датчиков физических величин. Причем в последнем случае, как правило, необходимо преобразование аналоговых сигналов с датчиков в потоки цифровых кодов (рис 2,21)с помощью аналого-цифровых преобразователей (АЦП). Например, в случае персонального компьютера входными сигналами являются сигналы с клавиатуры, с датчиков перемещения мыши, с микрофона (давление воздуха, то есть звук, преобразуется в аналоговый электрический сигнал, а затем — в цифровые коды), из кабеля локальной сети и т.д.


Рис. 2.11.  Включение цифрового устройства



Рис. 2.12.  Аналого-цифровое и цифро-аналоговое преобразование

Выходные сигналы цифрового устройства могут предназначаться для подачи на другие цифровые устройства, для индикации (на эк ... Читать дальше »

Категория: 2. Лекция: Микросхемы и их функционирование | Просмотров: 665 | Добавил: willem | Дата: 10.03.2012

Для перевода 16-ричного числа в десятичное необходимо умножить значение младшего (нулевого) разряда на единицу, значение следующего (первого) разряда на 16, второго разряда на 256 (162) и т.д., а затем сложить все произведения. Например, возьмем число A17F:

A17F=F*160 + 7*161 + 1*162 + A*163 = 15*1 + 7*16+1*256+10*4096=41343
... Читать дальше »
Категория: 2. Лекция: Микросхемы и их функционирование | Просмотров: 1194 | Добавил: willem | Дата: 10.03.2012

Двоичное кодирование

Одиночный цифровой сигнал не слишком информативен, ведь он может принимать только два значения: нуль и единица. Поэтому в тех случаях, когда необходимо передавать, обрабатывать или хранить большие объемы информации, обычно применяют несколько параллельных цифровых сигналов. При этом все эти сигналы должны рассматриваться только одновременно, каждый из них по отдельности не имеет смысла. В таких случаях говорят о двоичных кодах, то есть о кодах, образованных цифровыми (логическими, двоичными) сигналами. Каждый из логических сигналов, входящих в код, называется разрядом . Чем больше разрядов входит в код, тем больше значений может принимать данный код.

В отличие от привычного для нас десятичного кодирования чисел, то есть кода с основанием десять, при двоичном кодировании в основании кода лежит число два (рис 2,9). То есть каждая цифра кода (каждый разряд) двоичного кода может принимать не десять значений (как в десятичном коде: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9), а всего лишь два — 0 и 1. Система позиционной записи остается такой же, то есть справа пишется самый младший разряд, а слева — самый старший. Но если в десятичной системе вес каждого следующего разряда больше веса предыдущего в десять раз, то в двоичной системе (при двоичном кодировании) — в два раза. Каждый разряд двоичного кода называется бит (от английского "Binary Digit" — "двоичное число").

 

Рис. 2.9.  Десятичное и двоичное кодирование

В табл 2,3 показано соответствие первых двадцати чисел в десятичной и двоичной системах.

Из таблицы видно, что требуемое количество разрядов двоичного кода значительно больше, чем требуемое количество разрядов десятичного кода. Максимально возможное число при количестве разрядов, равном трем, составляет при десятичной системе ... Читать дальше »

Категория: 2. Лекция: Микросхемы и их функционирование | Просмотров: 1267 | Добавил: willem | Дата: 10.03.2012

Корпуса цифровых микросхем

Большинство микросхем имеют корпус, то есть прямоугольный контейнер (пластмассовый, керамический, металлокерамический) с металлическими выводами (ножками). Предложено множество различных типов корпусов, но наибольшее распространение получили два основных типа:


Рис. 2.8.  Примеры корпусов DIL и Flat

  • Корпус с двухрядным вертикальным расположением выводов, например, DIP (Dual In Line Package, Plastic) — пластмассовый корпус, DIC (Dual In Line Package, Ceramic) — керамический корпус. Общее название для таких корпусов — DIL (рис 2,8). Расстояние между выводами составляет 0,1 дюйма (2,54 мм). Расстояние между рядами выводов зависит от количества выводов.
  • Корпус с двухрядным плоскостным расположением выводов, например, FP (Flat-Package, Plastic) — пластмассовый плоский корпус, FPC (Flat-Package, Ceramic) — керамический плоский корпус. Общее название для таких корпусов — Flat (рис 2,8). Расстояние между выводами составляет 0,05 дюйма (1,27 мм) или 0,025 дюйма (0,628 мм).

Номера выводов всех корпусов отсчитываются начиная с вывода, помеченного ключом, по направлению против часовой стрелки (если смотреть на микросхему сверху). Ключом может служить вырез на одной из сторон микросхемы, точка около первого вывода или утолщение первого вывода (рис 2,8). Первый вывод может находиться в левом верхнем или в правом нижнем углу (в зависимости от того, как повернут корпус). Микросхемы обычно имеют стандартное число выводов из ряда: 4, 8, 14, 16, 20, 24, 28,.… Для микросхем стандартных цифровых серий используются корпуса с количеством выводов начиная с 14.

Назначение каждого из выводов микросхемы приводится в справочниках по микросхемам, которых сейчас имеется множество. Правда, лучше ориентироваться на справочники, издаваемые непосредственно фирмами-изготовителями. В данном курсе назначение выводов не приводится.

Отечественные микросхемы выпускаются в корпусах, очень похожих на DIL и Flat, но расстояния между их выводами вычисляются по метрической шкале и поэтому чуть-чуть отличаются от принятых за рубежом. ... Читать дальше »

Категория: 2. Лекция: Микросхемы и их функционирование | Просмотров: 954 | Добавил: willem | Дата: 10.03.2012

Серии цифровых микросхем

В настоящее время выпускается огромное количество разнообразных цифровых микросхем: от простейших логических элементов до сложнейших процессоров, микроконтроллеров и специализированных БИС (Больших Интегральных Микросхем). Производством цифровых микросхем занимается множество фирм — как у нас в стране, так и за рубежом. Поэтому даже классификация этих микросхем представляет собой довольно трудную задачу.

Однако в качестве базиса в цифровой схемотехнике принято рассматривать классический набор микросхем малой и средней степени интеграции, в основе которого лежат ТТЛ серии семейства 74, выпускаемые уже несколько десятилетий рядом фирм, например, американской фирмой Texas Instruments (TII). Эти серии включают в себя функционально полный комплект микросхем, используя который, можно создавать самые разные цифровые устройства. Даже при компьютерном проектировании современных сложных микросхем с программируемой логикой (ПЛИС) применяются модели простейших микросхем этих серий семейства 74. При этом разработчик рисует на экране компьютера схему в привычном для него элементном базисе, а затем программа создает прошивку ПЛИС, выполняющую требуемую функцию.


Рис. 2.5.  Система обозначений фирмы Texas Instruments

Каждая микросхема серий семейства 74 имеет свое обозначение, и система обозначений отечественных серий существенно отличается от принятой за рубежом.

В качестве примера рассмотрим систему обозначений фирмы Texas Instruments (рис 2,5). Полное обозначение состоит из шести элементов:

  1. ... Читать дальше »
Категория: 2. Лекция: Микросхемы и их функционирование | Просмотров: 2104 | Добавил: willem | Дата: 10.03.2012



Рис. 2.2.  Обозначение входов и выходов

Для обозначения полярности сигнала на схемах используется простое правило: если сигнал отрицательный, то перед его названием ставится знак минус, например, -WR или -OE, или же (реже) над названием сигнала ставится черта. Если таких знаков нет, то сигнал считается положительным. Для названий сигналов обычно используются латинские буквы, представляющие собой сокращения английских слов, например, WR — сигнал записи (от "write" — "писать").

Инверсия сигнала обозначается кружочком на месте входа или выхода. Существуют инверсные входы и инверсные выходы (рис 2,2).

Если какая-то микросхема выполняет функцию по фронту входного сигнала, то на месте входа ставится косая черта (под углом 45°), причем наклон вправо или влево определяется тем, положительный или отрицательный фронт используется в данном случае (рис 2,2).

Тип выхода микросхемы помечается специальным значком: выход 3С — перечеркнутым ромбом, а выход ОК — подчеркнутым ромбом (рис 2,2). Стандартный выход (2С) никак не помечается.

... Читать дальше »

Категория: 2. Лекция: Микросхемы и их функционирование | Просмотров: 2786 | Добавил: willem | Дата: 10.03.2012



Для изображения электронных устройств и их узлов применяется три основных типа схем:

·         принципиальная схема ;

·         структурная схема ;

·         функциональная схема.

Различаются они своим назначением и, самое главное, степенью детализации изображения устройств.

... Читать дальше »

Категория: 2. Лекция: Микросхемы и их функционирование | Просмотров: 948 | Добавил: willem | Дата: 10.03.2012


Входы и выходы цифровых микросхем

Характеристики и параметры входов и выходов цифровых микросхем определяются прежде всего технологией и схемотехникой их внутреннего строения. Но для разработчика цифровых устройств любая микросхема представляет собой всего лишь "черный ящик", внутренности которого знать не обязательно. Ему важно только четко представлять себе, как поведет себя та или иная микросхема в данном конкретном включении, будет ли она правильно выполнять требуемую от нее функцию.

Наибольшее распространение получили две технологии цифровых микросхем:

  • ТТЛ (TTL) и ТТЛШ (TTLS) — биполярная транзисторно-транзисторная логика и ТТЛ с диодами Шоттки;
  • КМОП (CMOS) — комплементарные транзисторы со структурой "металл–окисел–полупроводник".

Входной и выходной каскады микросхем ТТЛШ

Рис. 1.7.  Входной и выходной каскады микросхем ТТЛШ

Входной и выходной каскады микросхем КМОП

Рис. 1.8.  Входной и выходной каскады микросхем КМОП

Различаются они типами используемых транзисторов и схемотехническими решениями внутренних каскадов микросхем. Отметим также, что микросхемы КМОП потребляют значительно меньший ток от источника питания, чем такие же микросхемы ТТЛ (или ТТЛШ) — правда, только в статическом режиме или на небольших рабочих частотах. На рис1,7 и 1,8 показаны примеры схем входных и выходных каскадов микросхем, выполн ... Читать дальше »

Категория: 1. Лекция: Базовые понятия цифровой электроники | Просмотров: 2087 | Добавил: willem | Дата: 10.03.2012

Уровни представления цифровых устройств

Все цифровые устройства строятся из логических микросхем, каждая из которых (рис 1,3) обязательно имеет следующие выводы (или, как их еще называют в просторечии, "ножки"):

  • выводы питания: общий (или "земля") и напряжения питания (в большинстве случаев — +5 В или +3,3 В), которые на схемах обычно не показываются;
  • выводы для входных сигналов (или ""входы"), на которые поступают внешние цифровые сигналы;
  • выводы для выходных сигналов (или "выходы"), на которые выдаются цифровые сигналы из самой микросхемы.

Каждая микросхема преобразует тем или иным способом последовательность входных сигналов в последовательность выходных сигналов. Способ преобразования чаще всего описывается или в виде таблицы (так называемой таблицы истинности), или в виде временных диаграмм, то есть графиков зависимости от времени всех сигналов.


Рис. 1.3.  Цифровая микросхема

Все цифровые микросхемы работают с логическими сигналами, имеющими два разрешенных уровня напряжения. Один из этих уровней называется уровнем логической единицы (или единичным уровнем), ... Читать дальше »

Категория: 1. Лекция: Базовые понятия цифровой электроники | Просмотров: 2243 | Добавил: willem | Дата: 10.03.2012

Аналог или цифра?

Для начала дадим несколько базовых определений.

Сигнал - это любая физическая величина (например, температура, давление воздуха, интенсивность света, сила тока и т.д.),

изменяющаяся со временем. Именно благодаря этому изменению сигнал может нести в себе какую-то информацию.

Электрический сигнал - это электрическая величина (например, напряжение, ток, мощность), изменяющаяся со временем. Вся электроника в основном работает с электрическими сигналами, хотя сейчас все больше используются световые сигналы, которые представляют собой изменяющуюся во времени интенсивность света.

Аналоговый сигнал - это сигнал, который может принимать любые значения в определенных пределах (например, напряжение может плавно изменяться в пределах от нуля до десяти вольт). Устройства, работающие только с аналоговыми сигналами, называются аналоговыми устройствами. Название "аналоговый" подразумевает, что сигнал изменяется аналогично физической величине, то есть непрерывно.

Цифровой сигнал - это сигнал, который может принимать только два (иногда - три) значения, причем разрешены некоторые отклонения от этих значений (рис1,1). Например, напряжение может принимать два значения: от 0 до 0,5 В (уровень нуля) или от 2,5 до 5 В (уровень единицы). Устройства, работающие исключительно с цифровыми сигналами, называются цифровыми устройствами.

Электрические сигналы: аналоговый (слева) и цифровой (справа)

Рис. 1.1.  Электрические сигналы: аналоговый (слева) и цифровой (справа)

... Читать дальше »

Категория: 1. Лекция: Базовые понятия цифровой электроники | Просмотров: 1103 | Добавил: willem | Дата: 10.03.2012